Heterogeneity of bone lamellar-level elastic moduli.

نویسندگان

  • C E Hoffler
  • K E Moore
  • K Kozloff
  • P K Zysset
  • M B Brown
  • S A Goldstein
چکیده

Advances in our ability to assess fracture risk, predict implant success, and evaluate new therapies for bone metabolic and remodeling disorders depend on our understanding of anatomically specific measures of local tissue mechanical properties near and surrounding bone cells. Using nanoindentation, we have quantified elastic modulus and hardness of human lamellar bone tissue as a function of tissue microstructures and anatomic location. Cortical and trabecular bone specimens were obtained from the femoral neck and diaphysis, distal radius, and fifth lumbar vertebra of ten male subjects (aged 40-85 years). Tissue was tested under moist conditions at room temperature to a maximum depth of 500 nm with a loading rate of 10 nm/sec. Diaphyseal tissue was found to have greater elastic modulus and hardness than metaphyseal tissues for all microstructures, whereas interstitial elastic modulus and hardness did not differ significantly between metaphyses. Trabecular bone varied across locations, with the femoral neck having greater lamellar-level elastic modulus and hardness than the distal radius, which had greater properties than the fifth lumbar vertebra. Osteonal, interstitial, and primary lamellar tissues of compact bone had greater elastic moduli and hardnesses than trabecular bone when comparing within an anatomic location. Only femoral neck interstitial tissue had a greater elastic modulus than its osteonal counterpart, which suggests that microstructural distinctions can vary with anatomical location and may reflect differences in the average tissue age of cortical bone or mineral and collagen organization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Age, gender, and bone lamellae elastic moduli.

To enhance preventative and therapeutic strategies for metabolic bone diseases and bone fragility disorders, we began to explore the physical properties of bone tissue at the cellular level. Proximal femurs were harvested from 27 cadavera (16 male and 11 female) for in vitro measurement of the mechanical properties. We measured the variations in lamellar-level elastic modulus and hardness in hu...

متن کامل

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Comparative study of bone and lamellar bone formation in Peripheral Giant Cell Granuloma and Peripheral Ossifying Fibroma

Comparative study of bone and lamellar bone formation in Peripheral Giant Cell Granuloma and Peripheral Ossifying Fibroma Dr. SH. Ghasemi Moridani* - Dr. H. Mahmoodi Chenari* *-Assistant Professor of Oral and Maxillofacial Pathology Dept.-Faculty of Dentistry-Guilan University of Medical Sciences. **- Dentist. Background and Aim: Peripheral Giant Cell Granuloma (PGCG) and peripheral ossifying f...

متن کامل

Mechanical properties of femoral trabecular bone in dogs

BACKGROUND Studying mechanical properties of canine trabecular bone is important for a better understanding of fracture mechanics or bone disorders and is also needed for numerical simulation of canine femora. No detailed data about elastic moduli and degrees of anisotropy of canine femoral trabecular bone has been published so far, hence the purpose of this study was to measure the elastic mod...

متن کامل

Mechanical Properties of CNT-Reinforced Polymer Nano-composites: A Molecular Dynamics Study

Understanding the mechanism underlying the behavior of polymer-based nanocomposites requires investigation at the molecular level. In the current study, an atomistic simulation based on molecular dynamics was performed to characterize the mechanical properties of polycarbonate (PC) nanocomposites reinforced with single-walled armchair carbon nanotubes (SWCNT). The stiffness matrix and elastic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 26 6  شماره 

صفحات  -

تاریخ انتشار 2000